МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования

«Воронежский государственный педагогический университет»

	УТВЕРЖДАЮ Проректор по учебной работе	Г.П. Иванова
	«»20г.	
РАБОЧАЯ П	РОГРАММА УЧЕБНОЙ ДИСЦИПЛИН	НЫ
ДОПОЛН	ИТЕЛЬНЫЕ ГЛАВЫ ФИЗИ.	Ки
Уровень основной образовате	ельной программы: бакалавриат	
Направление подготовки: Профиль:	231300.62, Прикладная математика Математическое и программное обеработки информации и управления.	спечение систем об
Форма обучения: Срок освоения ООП: Кафедра:	очная 4 года Общей физики	
Разработчик(и):		
Доц. Каф. Общей физики	M.E	З.Гольдфарб
Начальник учебно-методическо	ого управления Т.В	. Майзель
	сциплины одобрена на заседании кафедры	
Заведующий кафедрой общей ф	ризики проф. В	3.А.Хоник

Лист переутверждения рабочей программы учебной дисциплины

Рабочая программа:
одобрена на 20/20 учебный год. Протокол № заседания кафедры
от "" 20 г. Ведущий преподаватель Зав. кафедрой_
Зав. кафедрой
одобрена на 20/20 учебный год. Протокол № заседания кафедры от "" 20 г. Ведущий преподаватель
Зав. кафедрой
одобрена на 20/20 учебный год. Протокол № заседания кафедры от "" 20 г. Ведущий преподаватель Зав. кафедрой
Зав. кафедрой
одобрена на 20/20 учебный год. Протокол № заседания кафедры от "" 20 г. Ведущий преподаватель
Зав. кафедрой
зав. кафедроп
одобрена на 20/20 учебный год. Протокол №заседания кафедры
от "" 20 г. Ведущий преподаватель
Зав. кафедрой

1. ЦЕЛИ ОСВОЕНИЯ ДИСЦИПЛИНЫ

Цели освоения дисциплины «Дополнительные главы физики»:

- Формирование систематизированных знаний в области общей и экспериментальной физики в разделах: Молекулярная физика. Атомная и ядерная физика.
- Освоение аппарата математической физики.
- Умение решать типовые физические задачи.

В процессе освоения данной дисциплины студент формирует и демонстрирует следующие компетенции:

• ПК-1: готовность к самостоятельной работе.

Структура	Основные признаки уровня				
компетенции	Базовый уровень	Повышенный уровень			
Уметь проводить реферативные исследования, самостоятельную исследовательскую работу.	Умеет проводить реферативный поиск дидактического материала для выполнения лабораторных и исследовательских работ по физике.	Умеет находить место физическим законам в дидактическом материале по выполнению лабораторных и исследовательских работ по физике.			
Владеть навыками реферативной, научно- исследовательской и самостоятельной работы.	Умеет пользоваться результатами реферативного исследования для самостоятельной обработки результатов выполнения лабораторных и исследовательских работ.	Умеет пользоваться результатами реферативного и научного исследования для самостоятельного усвоения учебного материала, научно-исследовательской работы.			

• ПК-11: знать основные положения, законы и методы естественных наук; способность выявить естественнонаучную сущность проблем, возникающих в ходе профессиональной деятельности, готовность использовать для их решения соответствующий естественнонаучный аппарат.

Структура	Основные признаки уровня					
компетенции	Базовый уровень	Повышенный уровень				
	дает определение основных трансдисциплинарных понятий физики	Объясняет роль и место законов физики в процессах познания материального мира, физической науке в целом				
Знает основные концепции и принципы современной физической науки, её трандисциплинарные по-	знает перечень основных концепций современной физики	Знает и объясняет место и роль концепций современной физики в процессах познания материального мира, физической науке в целом.				
нятия.	знает перечень основных принципов современной фи- зики	Знает и объясняет место и роль принципов современной физики в процессах познания материального мира, физической науке в целом.				
	Воспроизводит формули-	Знает и объясняет следствия из				
	ровки основных концепций	концепций и принципов совре-				

	и принципов современной физики.	менной физики для открытых и замкнутых систем.
Умеет пользоваться концептуальными основами современной физической науки, применять её аспектамы для решения физических задач.	умеет находить причинно- следственные связи явлений материального мира, ис- пользуя концепции и прин- ципы современной физики для открытых и замкнутых систем.	Умеет видеть место и роль физических понятий физики, её современных концепций и принципов для решения физических задач.
Владеет навыками системного восприятия, анализа и применения знаний о материальном мире для решения физических задач.	Владеет навыками восприятия учебной и научной информации.	Владеет навыками использования для решения задач соответствующего естественнонаучного аппарата.

• ПК-14: способность самостоятельно изучать новые разделы фундаментальных наук.

Структура	Основные признаки уровня				
компетенции	Базовый уровень	Повышенный уровень			
Знать содержание современной естественнонаучной картины мира, её роль и место в парадигмальных процессах цивилизации в целом.	знает перечень базовых концепций современной парадигмы развития цивилизации в целом. знает перечень базовых понятий, формирующих содержание естественнонаучной картины мира.	объясняет роль и место научного мировоззрения в понимании базовых концепций современной парадигмы развития цивилизации в целом.			
Умеет включать мировоззренческие аспекты материального мира в свой образовательный процесс и профессиональную деятельность.	Умеет выделять мировоззренческие аспекты физического образования. Умеет формулировать базовае принципы своей будущей профессиональной деятельности.	Умеет находить место и роль научного мировоззрения в своём образовательном процессе. Умеет находить место и роль научного мировоззрения в своей будущей профессиональной деятельности.			
Владеет навыками самостоятельной работы с литературой и умением собственного просвещения в мировоззренческих аспектах естествознания.		Владеет навыками построения своего образовательного процесса от базовых положений научного мировоззрения.			

• ОК-9: стремление к саморазвитию, повышение своей квалификации и мастерства.

Структура	Основные признаки уровня				
компетенции	Базовый уровень	Повышенный уровень			
Знать ключевые про- блемы и задачи физи- ческой науки, методы	знает перечень ключевых проблем и задач физической науки.	Объясняет роль и место ключевых проблем и задач физической науки в вопросах формирования физического образования в целом.			
и методологию их исследования.	Знает перечень современных методов исследования проблем физической науки.	Знает и объясняет методологические основы исследования проблем и задач современной физики.			
Уметь проводить реферативные исследования, самостоятельную исследовательскую работу, пользовать частными и общими законами и закономерностями физики и её дидактики.	Умеет проводить реферативный поиск дидактического материала для выполнения лабораторных и исследовательских работ по физике.	Умеет находить место физическим законам в дидактическом материале по выполнению лабораторных и исследовательских работ по физике.			
Владеть навыками реферативной, научно- исследовательской и самостоятельной ра- боты в области физики и её дидактики.	Умеет пользоваться результатами реферативного исследования для самостоятельной обработки результатов выполнения лабораторных и исследовательских работ.	Умеет пользоваться результатами реферативного и научного исследования для самостоятельного усвоения учебного материала, научно-исследовательской работы.			

• *OK-12*: использовать основные законы естественнонаучных дисциплин в профессиональной деятельности, применять методы математического анализа и моделирования, теоретического и экспериментального исследования.

Структура	Основные признаки уровня				
компетенции	Базовый уровень	Повышенный уровень			
Знает основные кон-	дает определение основных понятий физики	Объясняет роль и место законов физики в процессах познания материального мира, физической науке в целом			
цепции и принципы современной физической науки, её понятия и методы.	знает перечень основных концепций современной физики и методов исследования.	Знает и объясняет место и роль концепций современной физики в процессах познания материального мира. Владеет экспериментальными методами исследования.			
	Воспроизводит формулировки основных концепций и принципов современной физики.	Знает и объясняет следствия из концепций и принципов современной физики для открытых и замкнутых систем.			
Умеет пользоваться методами современной физической науки, применять ее модели	умеет находить причинно- следственные связи явлений материального мира, стро- ить математические модели	Умеет применять методы математического анализа и моделирования для решения физических задач.			

для решения физиче-	явлений.	
ских задач.		
Владеет навыками	Владеет навыками воспри-	
системного воспри-	ятия учебной и научной ин-	Владеет навыками использова-
ятия, анализа и при-	формации, методами мате-	ния для решения задач метода-
менения знаний о ма-	матического анализа и мо-	ми математического анализа и
териальном мире для	делирования.	моделирования.
решения физических		
задач.		

2. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ООП ВПО

- 2.1. Учебная дисциплина «Дополнительные главы физики» относится к. дисциплинам вариативной части профессионального цикла Б2.В.ДВ.1.1.
- 2.2. Для изучения данной учебной дисциплины необходимы знания, умения и навыки, формируемые предшествующими дисциплинами: Б2.Б10. Физика.
- 2.3. Перечень последующих учебных дисциплин, для которых необходимы знания, умения и навыки, формируемые данной учебной дисциплиной:

3. ТРЕБОВАНИЯ К РЕЗУЛЬТАТАМ ОСВОЕНИЯ УЧЕБНОЙ ДИСЦИПЛИНЫ

3.1. В результате изучения учебной дисциплины **«Физика»** студенты овладевают следующими знаниями, умениями и навыками:

Знания: основных законов физики и физических моделей.

Умения: применять математические и численные методы при решении физических задач.

Навыки: использовать математический аппарат при решении типовых задач.

- 3.2. Изучение данной учебной дисциплины направлено на формирование у обучающихся следующих компетенций:
 - ПК-1: готовность к самостоятельной работе.
 - ПК-11: знать основные положения, законы и методы естественных наук; способность выявить естественнонаучную сущность проблем, возникающих в ходе профессиональной деятельности, готовность использовать для их решения соответствующий естественнонаучный аппарат.
 - ПК-14: способность самостоятельно изучать новые разделы фундаментальных наvк.
 - ОК-9: стремление к саморазвитию, повышение своей квалификации и мастерства.
 - *OK-12*: использовать основные законы естественнонаучных дисциплин в профессиональной деятельности, применять методы математического анализа и моделирования, теоретического и экспериментального исследования.

4. СТРУКТУРА И СОДЕРЖАНИЕ ДИСЦИПЛИНЫ

4.1. ОБЪЕМ УЧЕБНОЙ ДИСЦИПЛИНЫ И ВИДЫ УЧЕБНОЙ РАБОТЫ

Вид учебной работы	Всего	Семестры
Bhg y reduct padd bi	Decro	Семсетры

		часов	№ 1	№ 2	№ 3
			часов	часов	часов
1		2	3	4	5
Аудиторные занятия	(всего)	108	18	36	54
В том числе:		-	-	-	
Лекции (Л)		36		18	18
Практические занятия	(ПЗ), Семинары (С)	36	18	18	
Лабораторные работы	(ЛР)	36			36
Самостоятельная раб (всего)	ота студента (СРС)	108	54	36	18
В том числе:		-	-	-	-
Курсовая работа	КР				
Другие виды СРС:		-	-	-	-
Подготовка лаб.раб к з	ащите				
Подготовка к практиче	ским занятиям		54	36	
СРС в период промежу	точной аттестации				18
Вид промежуточ.	зачет (3)				+
аттестации	экзамен (Э)				
ИТОГО: Общая	часов	216	72	72	72
трудоемкость	зач. ед.	6	2	2	2

4.2. СОДЕРЖАНИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ

4.2.1. Разделы дисциплины, виды учебной деятельности и формы контроля

№ п/п	№ семе-	Наименование раздела учебного	Виды учебной деятельно- сти, включая самостоя- тельную работу студентов (в часах)				Формы текущего контроля успев-ти (по неделям семестра)	
	стра	модуля	Л	л ЛР		CPC	все- го	оелям семестра)
1	2	3	4	5	6	7	8	9
		Электростатика.			4	12	16	Решение задач. Контр.
	1	Постоянный ток.			4	12	16	Решение задач. Тести- рование.
		Магнитное поле			4	12	16	Решение задач. Контр.
		Оптика			6	18	24	Решение задач. Зачет- ная контрольная.
	Всего з	а 1 семестр			18	54	72	
1.	2	Молекулярная физи- ка.	8		10	12	30	Решение задач. Тести- рование. Семинар. (2)
2.	2	Термодинамика.	6		6	12	24	Решение задач. Кон- трольная. Семинар.(2)

3.		Неравновесные сис- темы.	4		2	12	18	Решение задач.
4.	Всего за 2 семестр		18		18	36	72	
5.		Законы теплового излучения.	2	8	2		12	Защита л/р. Тестирова- ние
6.	3	Квантовая физика	6	8	6		20	Защита л/р. Тестирова- ние
7.		Атомная физика	6	12	6		24	Защита л/р.
8.		Физика атомного ядра	4	8	4		16	Защита л/р. Зачет.
9.	Всего за 3 семестр		18	36	18		72	

4.2.2. Содержание разделов учебной дисциплины

МЕХАНИКА МОЛЕКУЛЯРНАЯ ФИЗИКА И ВВЕДЕНИЕ В ТЕРМОДИНАМИКУ".

- **Лекция 1.** Основные понятия статистической физики. Основные величины статистической физики: вероятность, плотность вероятности, функция распределения, флуктуации. Средние величины. Классическая статистика. Распределение Максвелла- Больцмана.
- **Лекция 2**. Основы молекулярно кинетической теории идеального газа. Броуновское движение. Модель идеального газа. Основное уравнение кинетической теории газов. Средняя энергия молекул идеального газа. Постоянная Больцмана. Температура и давление.
- **Лекция 3.** Характер движения молекул идеального газа. Распределение молекул по скоростям. Скорости молекул —средняя квадратичная, средняя арифметическая, вероятная. Опытное определение скоростей молекул (Опыт Штерна, Ламмерта).
- **Лекция 4**. Идеальный газ в потенциальном поле. Барометрическая формула. Распределение Больцмана. Число столкновений молекул, средняя длина свободного пробега молекул, среднее эффективное сечение. Неравновесные системы. Условия неравновесности систем. Процессы, ведущие к восстановлению равновесия в газах —диффузия, внутреннее трение, теплопроводность.
- **Лекция 5.** Внутреннее трение в газах. Роль теплового движения в переносе импульса. Коэффициент вязкости. Понятие диффузии. Уравнение диффузии. Коэффициент диффузии. Теплопроводность. Коэффициент теплопроводности.
- **Лекция 6.** Основы термодинамики. Основные понятия термодинамики: термодинамическая система, термодинамические параметры, термодинамическое равновесие. Внутренняя энергия как функция состояния. Работа и теплота. Понятие о молярной и удельной теплоемкости. Первое начало термодинамики. Закон сохранения энергии для тепловых процессов. Математическое выражение первого начала термодинамики в дифференциальной форме
- **Лекция 7.** Изобарический и изохорический процессы. Применение первого начала термодинамики для этих процессов. Работа идеального газа. Изохорная и изобарная теплоемкости. Изотермический и адиабатический процессы. Применение первого начала для этих процессов.

Лекция 8. Уравнение Пуассона. Постоянная адиабаты: связь между другими параметрами газа в этом процессе. График процесса. . Работа идеального газа в адиабатическом процессе. Термодинамические процессы. Тепловые машины. Понятие о цикле. Обратимые и необратимые процессы. Круговые процессы. Принцип работы тепловой и холодильной машины. КПД. Цикл Карно. Вывод формулы КПД этого цикла.

Лекция 9. Второе начало термодинамики. Формула Клаузиуса. Неравенство Клаузиуса. Энтропия . Изменение энтропии в замкнутой и незамкнутой системе. Энтропия и вероятность. Понятие о термодинамической вероятности. Формула Больцмана. Статистическое истолкование второго начала термодинамики. "Тепловая смерть" Вселенной. Реальные газы. Модель реального газа. Уравнение Ван-дер-Ваальса. Изотермы Ван-дер- Ваальса.

СЕМИНАРСКИЕ ЗАНЯТИЯ ПО РАЗДЕЛУ

Молекулярная физика и введение в термодинамику.

Семинар 1.

- 1.1. Газовые законы. Уравнение состояния идеального газа
- 1.2. Опытные обоснования молекулярно- кинетической теории газов.
- 1.3. Основное уравнение кинетической теории газов; постоянная Больцмана;

Семинар 2.

- 2.1 Понятие температуры на основе молекулярно- кинетической теории. Статистическое истолкование температуры. Шкалы температур.
- 2.2 Методы измерения температур: полупроводниковый, спектральный, электросопротивление и т.д.
- 2.3 Распределение молекул по скоростям.
- 2.4 Распределение Больцмана.

Семинар 3.

- 3.1. Строение и свойства жидкости покурсу средней школы.
- 3.2. Строение жидкости.
- 3.3. Поверхнстное натяжение. Методы его измерения. Давление Лапласса.
- 3.4. Краевой угол. Смачивание. Капиллярные явления. Практическое использование поверхностных явлений.
- 3.5. Давление насыщенных паров над мениском.

Семинар 4.

- 4.1. Внутренняя энергия. Первый закон термодинамики и его методологическое значение. Теплоемкость идеальных газов.
- 4.2. Средняя кинетическая энергия теплового движения молекул; внутренняя энергия идеального газа; классическая теория теплоемкости.
- 4.3. Изопроцессы. Работа, совершаемая газом в изопроцессах. Работа при адиабатическом расширении газа.

Семинар5.

- 5.1. Обратимые и необратимые процессы. Круговые процессы.
- 5.2. Цикл Карно. К.П.Д. цикла Карно.
- 5.3. Технические циклы.

Темы практических занятий по курсу Молекулярная физика и введение в термодинамику (решение задач).

1. Идеальный газ. Уравнение состояния идеального газа. Основные газовые законы.

- 1.1. Задачи на определение параметров идеального газа.
- 1.2. Решение задач графическим методом.
- 1.3. Задачи с использованием газовых законов.

2. Основы молекулярно- кинетической теории газов.

- 2.1. Задачи с использованием основного уравнения кинетической теории газов.
- 2.2. Задачи на расчет теплоемкости идеального газа.
- 2.3. Задачи на расчет скоростей газовых молекул и на распределение Максвелла.
- 2.4. Задачи с использованием распределения Больцмана и барометрической формулы. Контрольная работа.

3. Основы термодинамики.

- 3.1. Задачи на применение 1 начала термодинамики к изопроцессам в идеальном газе.2
- 3.2. Задачи на применение 2 начала термодинамики к идеальному газу.

Физика атома и атомного ядра (3 семестр)

Лекция 1. Законы теплового излучения. Равновесное излучение. Закон Кирхгофа. Абсолютно черное тело. Законы Стефана-Больцмана, Вина, формула Планка. Передача энергии излучением. Оптическая пирометрия.

Лекция 2. Фотоэффект. Работы Столетова. Законы фотоэффекта. Кванты света. Уравнение Эйнштейна. Импульс фотонов. Корпускулярно-волновой дуализм света. Исторический обзор развития атомной и ядерной физики.. Опыты Резерфорда по рассеянию α- частиц. Ядерная модель атома. Формула Резерфорда. Общая характеристика спектров излучения и поглощения.

Лекция 3.Постулаты Бора. Уровни энергии атома. Определение потенциалов возбуждения и ионизации атомов. Опыт Франка и Герца. Волны де Бройля. Дифракция электронов. Соотношение Гейзенберга. Волновая функция и ее физический смысл. Принцип суперпозиции в квантовой механике.

Лекция 4. Уравнение Шредингера — основное уравнение квантовой механики. Стационарное состояние. Задача о нахождении частицы в бесконечно глубокой потенциальной яме. Линейный гармонический осциллятор. Его энергетический спектр. Нулевая энергия и нулевые колебания. Квантование энергии и момента импульса в атоме. Квантовые числа. Их физический смысл. Опыт Штерна и Герлаха. Спин и магнитный момент электрона. Эффект Зеемана.

Лекция 5. Принцип неразличимости частиц. Фермионы и бозоны. Принцип Паули. Электронные оболочки и строение сложных атомов. Периодическая система элементов Менделеева.

Лекция 6.Тормозное рентгеновское излучение. Природа характеристических рентгеновских спектров. Закон Мозли. Спонтанное и индуцированное излучение. Квантовые генераторы (лазеры) и их применение.

Лекция 7. Естественная радиоактивность. Закон радиоактивного распада. Период полураспада. α , β , γ -распады. Радиоактивные ряды. Правила смещения. Применение радиоактивности. Строение ядра. Нуклоны. Заряд и масса ядра. Масспектрометры. Изотопы. Изобары. Капельная и оболочечная модели ядра.

Лекция 8. Ядерные силы. Энергия связи ядра. Дефект массы. Стабильность ядра. Элементарная теория α- распада как туннельного перехода. Экспериментальные методы ядерной физики. Счетчики частиц, камера Вильсона, фотоэмульсии. Ускорители заряженных частиц.

Лекция 9. Деление ядер урана. Цепная ядерная реакция. Ядерные реакторы на тепловых и быстрых нейтронах. Ядерная энергетика. Экологические проблемы эксплуатации ядерных электростанций. Термоядерный синтез. Общие сведения об элементарных частицах. Элементарные частицы в космических лучах. Стабильные элементарные частицы. Античастицы. Мезоны и гипероны. Элементарные частицы и фундаментальные взаимодействия.

4.2.3. Образовательные технологии

п/п	Виды учебной работы	Образовательные технологии
1.	Лекция	проблемная, визуализация через компьютерные презен-
		тации, в режиме диалога (10%)
2.	Практические занятия	Деятельностный подход к решению физических задач, к
		постановке задачи, обсуждение методов решения.(100%)
3.	Лабораторная работа	Деятельностный подход к решению экспериментальных
		задач, к формулированию актуальности, цели, постанов-
		ки задачи и выводов.(100%)
4.	Контрольная работа	Письменная форма

20% - интерактивных занятий от объема аудиторных занятий

4.2.4. Лабораторный практикум (3 семестр)

- 1. Вводное занятие.
- 2. Изучение внешнего фотоэффекта.
- 3. Снятие счетной характеристики счетчика Гейгера Мюллера.
- 4. Изучение работы фотосопротивления.
- 5. Изучение спектра водорода.
- 6. Определение постоянной Ридберга и массы электрона.
- 7. Соотношение неопределенностей для фотонов при их дифракции.
- 8. Изучение молекулярных спектров.
- 9. Лазеры
- 10. Определение средней длины пробега альфа частицы в воздухе.
- 11. Определение порядка величины удельного заряда электрона.
- 12. Нахождение коэффициента поглощения у-излучения.
- 13. Изучение микрочастиц трековыми методами.
- 14. Соотношение неопределенностей для фотонов.

- 15. Определение коэффициента поглощения β- лучей с помощью дозиметра.
- 4.2.5. Примерная тематика курсовых работ (не предусмотрены)

4.3. САМОСТОЯТЕЛЬНАЯ РАБОТА СТУДЕНТА

4.3.1. Планирование СРС

№ п/п	№ семе- стра	Наименование раздела учебной дисциплины	Виды СРС	Всего часов
1	2	3	4	5
1.		Электростатика.	Повторение теоретического материала. Решение задач. Подготовка к контрольной работе.	12
2.	1	Постоянный ток.	Повторение теоретического материала. Решение задач. Подготовка к контрольной работе.	12
3.		Магнитное поле	Повторение теоретического материала. Решение задач.	12
4.		Оптика	Повторение теоретического материала. Решение задач. Подготовка к зачетной контрольной работе.	18
ИТС	ГО час	сов в 1 семестре:		54
5.		Молекулярная фи- зика.	Решение задач. Подготовка к тестированию. Подготовка к семинару.	8
6.	2	Термодинамика.	Решение задач. Контрольная. Семинары	8
7.		Неравновесные системы.	Решение задач. Подготовка к зачету.	20
ИТС	ГО час	сов во 2 семестре:		36
8.	3	Излучения. Радио- активность.	Математическая обработка результатов измерений. Подготовка отчета о выполнении лабораторной работы.	6
9.		Атомная физика.	Математическая обработка результатов измерений. Подготовка отчета о выполнении лабораторной работы.	6
10.		Физика атомного ядра и элементар- ных частиц.	Математическая обработка результатов измерений. Подготовка отчета о выполнении лабораторной работы. Подготовка к зачету.	6
ИТС	ГО час	сов в 3 семестре:		18

5. ОЦЕНОЧНЫЕ СРЕДСТВА ДЛЯ КОНТРОЛЯ УСПЕВАЕМОСТИ И РЕЗУЛЬТАТОВ ОСВОЕНИЯ УЧЕБНОЙ ДИСЦИПЛИНЫ

5.1. Текущий контроль

В ходе текущего контроля используются:

устный и письменный опрос;

опросы при выполнении лабораторного практикума.

контрольные работы;

бланочное тестирование;

индивидуальные и/или групповые домашние задания (задачи);

5.2. Промежуточная аттестация по дисциплине

1СЕМЕСТР - зачет по результатам итоговой к/р и текущих тестирований.

2СЕМЕСТР - зачет не предусмотрен.

Вопросы к зачету (3 СЕМЕСТР)

- 1. Тепловое излучение. Лучеиспускательная и поглощательная способность тел.
- 2. Законы Кирхгофа и его следствия. Излучение абсолютно- черного тела.
- 3. Закон Стефана- Больцмана. Закон смещения Вина.
- 4. Распределение энергии в спектре излучения абсолютно черного тела. Формула Релея-Джинса.
- 5. Квантование энергии излучения. Формула Планка. Оптические пирометры.
- 6. Фотоэлектрический эффект. Фотоны. Уравнение Эйнштейна. Опыты Вавилова.
- 7. Опыты Резерфорда по рассеянию α частиц. Формула Резерфорда.
- 8. Спектры излучения и поглощения. Линейчатые, полосатые, сплошные спектры. Комбинационный принцип Ритца.
- 9. Спектральные серии атома водорода.
- 10. Постулаты Бора. Уровни энергии атома. Теория атома водорода по Бору. Теория Бора как промежуточный этап в развитии представлений об атоме.
- 11. Опыт Франка и Герца.
- 12. Определение потенциалов возбуждения и ионизации атомов.
- 13. Гипотеза де Бройля. Физический смысл волн де Бройля, их свойства.
- 14. Соотношение неопределенностей Гейзенберга.
- 15. Волновая функция и ее физический смысл. Уравнение Шредингера. Задача о частице в бесконечно глубокой потенциальной яме.
- 16. Прохождение частицы сквозь потенциальный барьер.
- 17. Современные представления о строении и оптических свойствах атомов. Пространственное квантование.
- 18. Квантование энергии электрона в атоме. Квантовые числа и их физический смысл.
- 19. Спин электрона. Экспериментальное подтверждение существования спина электрона. (опыт Штерна и Герлаха).
- 20. Принцип Паули. Заполнение электронных оболочек в атомах.
- 21. Периодическая система элементов Д.И.Менделеева.
- 22. Рентгеновское излучение. Получение рентгеновских лучей и их свойства.
- 23. Сплошной и характеристический спектры рентгеновского излучения.

Закон Мозли.

- 24. Применение рентгеновских лучей.
- 25. Строение и основные характеристики атомных ядер. Энергия связи и устойчивость ядер.
- 26. Ядерные силы и их основные свойства.
- 27. Радиоактивный распад. α распад и его основные характеристики. Элементарная теория α -распада как тунельного перехода.
- 28. β распад. γ лучи. Резонансное поглощение γ квантов.
- 29. Естественная радиоактивность. Закон радиоактивного распада. Период полураспада.
- 30. Радиоактивные ряды. Правила смещения. Применение радиоактивности.
- 31. Реакция деления тяжелых ядер. Цепная реакция.
- 32. Ядерная энергетика. Использование ядерной энергетики в России.
- 33. Реакция синтеза. Проблемы управляемых термоядерных реакций.

6. УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ

6.1. Основная литература

Nº/	Помисоморомия	Angon(vv)	Год и место	Ce-	Количество экземпляров	
п/	паименование	именование Автор(ы) год и мес издан.		мес тр	в б-ке	на ка ф.
1	2	3	4	6	7	8
1.	Курс физики т.1 Механика. Моле- кулярная физика.	Савельев И.В.	М.: Кнорус, 2009. 528 с.	1	5	
2.	Курс физики т. 2: Электричество и магнетизм. Волны. Оптика.	Савельев И.В.	М.: Кнорус, 2009. 576 с.	1,2	5	
3.	Курс физики:	Трофимова Т. И.	М.: Акаде- мия, 2007. — 560 с.	1,2	20	
4.	Сборник задач по курсу физики с решениями.	Трофимова Т. И.	М.:Высш.шк., 2005. — 591с.	1,2	2	
5.	Сборник задач по физике	под ред. Р.И. Грабовского.	СПб.:Лань, 2004. 128c.	1,2		
6.	Механика	Коротаев Е.А. Попов В.И.	ВГПУ, 2007г.	1	50	
7.	Механика жидко- стей и газов	Коротаев Е.А.и др.	ВГПУ, 2002г.	1	50	
8.	Специальная теория относительности	Коротаев Е.А.и др.	ВГПУ, 2002г.	1	50	

6.2. Дополнительная литература

No			Год и ме-	Ce-	Количество экземпляров	
п/ п	Наименование	Автор(ы)	сто из- дан.	мес тр	в биб- ке	на каф.
1	2	3	4	5	6	7
1.	Общий курс физики. т 1.,2	Сивухин Д.В.	М.:Наука, 1982г.		30	
2.	Сборник задач по об- щему курсу физики	Волькен- штейн В.С.	М.:1979Г.		50	
3.	Задачи по общей физике	Иродов И.В.	М.:Наука, 2001г.		20	

6.3. Программное обеспечение и Интернет-ресурсы:

7. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ

1.1. Требования к аудиториям (помещениям, местам) для проведения занятий:									
Лекции и	практические	занятия:	интерактивная	доска,	видео	проектор,	компьютер.		

Тестирование: компьютерный класс.

7.2. Требования к оборудованию рабочих мест преподавателя и обучающихся:

Ноутбук, видеопроектор, программные средства. MS Office, __Word, Excel и др. ___